因為在書上都沒看過這類的實做,所以就實做一個吧
在刪除Binary Search Tree的某節點時,如果刪除的是樹葉節點 (Leaf) 就直接刪除
如果為非樹葉結點時 (non-Leaf) 時,就須以該刪除點為基準以左子數最大或是右子樹最小取代
以下程式的實作中,我統一以左子樹中最大的來取代刪除的點
在製作過程中較困難也最重要的是如果刪除該點後以左子樹最大取代
取代被刪除的點之後,左子樹最大的點及其父親節點和其而子結點該如何處理?
左圖為以下程式範例所建立的二元搜尋樹
以刪除20為例,程式會以左邊最大的節點15
去代 20。
以下為程式的部份 :
#include#include struct tree_node{ //二元搜尋樹的結構 int data; struct tree_node *Lchild; struct tree_node *Rchild; }; struct tree_node * search_Key(struct tree_node *, int); //搜尋該刪除點是否存在在BST中 struct tree_node * delete_treeNode(struct tree_node *, int); //刪除的函數 void trace_tree(struct tree_node *); //中序追蹤 struct tree_node * create_ex_TREE(); //建立一個二元搜尋樹 struct tree_node *pre = NULL; //此指標會指到需被刪除的點的父節點, 很重要 int main(void) { struct tree_node *root = NULL; root = create_ex_TREE(); //create a binary search tree root = delete_treeNode(root, 20); //Example for delete 20 printf("Now, the binary tree's in-order is"); trace_tree(root); //trace the binary search tree after delete_treeNode's operation system("pause"); return 0; } struct tree_node * delete_treeNode(struct tree_node *r, int Del_key) { struct tree_node *curr, *next, *dynSon; //next 主要是在左數最大被移除後, 讓pre能夠參照 curr = search_Key(r, Del_key); //搜尋該刪除點 if(curr == NULL){ //找不到 printf("%d is not exist in this binary tree\n"); return r; }else{ if(curr->Rchild == NULL) //代表要刪除的點沒有右節點 next = curr->Lchild; else if(curr->Lchild == NULL) //代表要刪除的點沒有左節點 next = curr->Rchild; else{ pre = curr; dynSon = curr->Lchild; while(dynSon->Rchild != NULL){ //此回圈會找出左邊最大的節點 pre = dynSon; dynSon = dynSon->Rchild; } curr->data = dynSon->data; curr = dynSon; //這很重要!!! 將curr指向左樹最大的節點 next = dynSon->Lchild; } if(pre == NULL)//代表這個二元搜尋樹只有一個節點, 如果刪除時 記得把 r 指向 NULL r = NULL; else if(curr == pre->Rchild) //pre 會指向左樹最大地節點(LMAX)的父節點,我以此判斷式代表現在curr就在LMAX結點上, 所以將LMAX的父節點重新指向到 next ("繞過" MAX) pre->Rchild = next; else{ pre->Lchild = next; } printf("SUCCESS for delete %d\n", Del_key); return r; //回傳 r, 讓 main 函數的 root 重新參考 } } struct tree_node * search_Key(struct tree_node *r, int key) { struct tree_node *q = r; while(q != NULL) { if(q->data == key){ return q; //找到了!! 回傳所在位置給 curr }else{ pre = q; //如果目前沒找到, 記得把 pre 只像目前的位置, 之後再繼續前進 if(q->data > key) q = q->Lchild; else q = q->Rchild; } } return NULL; } void trace_tree(struct tree_node *r) { if(r != NULL){ trace_tree(r->Lchild); printf(" %d ", r->data); trace_tree(r->Rchild); } } struct tree_node * create_ex_TREE() { struct tree_node *node1 = (struct tree_node *)malloc(sizeof(struct tree_node)); struct tree_node *node2 = (struct tree_node *)malloc(sizeof(struct tree_node)); struct tree_node *node3 = (struct tree_node *)malloc(sizeof(struct tree_node)); struct tree_node *node4 = (struct tree_node *)malloc(sizeof(struct tree_node)); struct tree_node *node5 = (struct tree_node *)malloc(sizeof(struct tree_node)); struct tree_node *node6 = (struct tree_node *)malloc(sizeof(struct tree_node)); struct tree_node *node7 = (struct tree_node *)malloc(sizeof(struct tree_node)); node1->data = 20; node2->data = 10; node3->data = 30; node4->data = 5; node5->data = 15; node6->data = 25; node7->data = 35; node1->Lchild = node2; node1->Rchild = node3; node2->Lchild = node4; node2->Rchild = node5; node3->Lchild = node6; node3->Rchild = node7; node4->Lchild = NULL; node4->Rchild = NULL; node5->Lchild = NULL; node5->Rchild = NULL; node6->Lchild = NULL; node6->Rchild = NULL; node7->Lchild = NULL; node7->Rchild = NULL; return node1; }
沒有留言:
張貼留言